Markov chain of binary sequences generated by A/D conversion using β -encoder

Satoshi Hironaka and Tohru Kohda

Dept. Computer Science and Communication Eng., Kyushu University

Kazuyuki Aihara

Dept. Mathmatical Eng. and Information Physics, Faculty Eng., Aihara Comlexity Modeling Project, ERATO, JST, Tokyo University

A/D D/A conversion

A/D D/A conversion are foundation for a variety of applications,

e.g., audio, image and communication etc.

Quantization error is inevitable.

Conventional methods of A/D D/A conversion

• PCM

has high precision, but doesn't have stability.

• $\Sigma \Delta$ modulation

has stability, but the order of its precision

is lower than PCM . β -encoder

high precision, stability The structure of $\Sigma \Delta$ modulator

Background

Hardware implementation

- Inose and Yasuda '64:
 Σ Δ modulation
- Gray '87 : Oversampled Σ Δ modulation
- Karanicolas '93:

A 15-b 1-Msamples/s Digitally self-Calibrated Pipelaine ADC

Ergodic theory

- Renyi '57: f-expansion
- Parry '67: beta-expansion
- Erdos and Joo '90: greedy and lazy expansion
- Dajani '02:
 - (β , α) expansion

Motivation

- β -encoder generates binary sequences with Markovity.
 cf.) PCM generates i.i.d. binary sequences.
- Does Markovity improve precision and guarantee stability? →Yes!!

PCM (Pulse Code Modulation)

Classical β -expansion

greedy and lazy expansions

マルコフマップ ($\lambda = 0.2$)

マルコフマップ ($\lambda = -0.2$)

The algorithm of beta-encoding

$$u_{1} = \beta y$$

$$b_{1} = Q_{\nu}(u_{1})$$

$$for \ i \ge 1: \quad u_{i+1} = \beta(u_{i} - b_{i})$$

$$b_{i+1} = Q_{\nu}(u_{i+1})$$

$$quantizer$$

$$Q_{\nu}(z) = \begin{cases} 0, \ z < \nu \\ 1, \ z \ge \nu \end{cases}$$

Let $1 < \beta < 2$ and $\gamma := 1/\beta$. Then each $y \in (0, 1)$ has a representation $y = \sum_{i=1}^{\infty} b_i \gamma^i$ with $b_i \in \{0, 1\}$

The structure of beta-encoder

For $\nu = 1$, this is the "greedy" scheme, for $\nu = (\beta - 1)^{-1}$, it is the "lazy" scheme, and for $1 < \nu < (\beta - 1)^{-1}$, it is the "cautious" scheme.

The (β , α) map

For $\alpha = 0$, "greedy". For $\alpha = (\beta - 1)^{-1} - 1$, "lazy". For $0 < \alpha < (\beta - 1)^{-1} - 1$, "cautious".

where $\alpha = \nu - 1$.

Main result I : β -decoding using interval analysis

Theorem 1: The decoded value \tilde{x} given by the interval analysis is defined by

which gives

$$0 \le |x - \widetilde{x}| \le rac{(eta - 1)^{-1} \gamma^L}{2} < \gamma^L \le \underline{\nu \gamma^L} \quad ext{when } eta > 3/2.$$

3dB improved when
$$\beta > 3/2$$

cf.)Daubechies: $0 \le |x - \tilde{x}_{Dau}| \le \underline{\nu \gamma^L}$. $\tilde{x}_{Dau} = \sum_{i=1}^{n} b_i \gamma^i$.

The precision of decoding

For N = 32 and $\beta = 1.77777$, the worst precision of the decoding when varing x and ν .

Proof: Define the interval

$$I_i = \left(\sum_{j=0}^i b_j \gamma^j, \sum_{j=0}^i b_j \gamma^j + \sum_{j=i+1}^\infty \gamma^j\right)$$

where $b_0 = 0$. Note that $\sum_{i=1}^{\infty} \gamma^i = (\beta - 1)^{-1}$.

Next, we use an induction argument to show that $x \in I_i$ for all i. Clearly, $x \in I_0 = (0, (\beta - 1)^{-1})$, since $x \in (0, 1)$. Suppose now that $x \in I_i$. If

$$u_{i+1} = \frac{x - \sum_{j=1}^{i} b_j \gamma^j}{\gamma^{i+1}} < \nu,$$

i.e., $b_{i+1} = 0$, then

$$x < \sum_{j=1}^{i} b_j \gamma^j + \nu \gamma^{i+1} \le \sum_{j=0}^{i+1} b_j \gamma^j + \sum_{j=i+2}^{\infty} \gamma^j$$

or $x \in I_{i+1}$.

If $u_{i+1} \ge \nu$, i.e., $b_{i+1} = 1$, then

$$x \ge \sum_{j=1}^{i} b_j \gamma^j + \nu \gamma^{i+1} \ge \sum_{j=0}^{i+1} b_j \gamma^j,$$

or $x \in I_{i+1}$.

Since $x \in I_L$ and $\tilde{x} = \sum_{i=1}^L b_i \gamma^i + \frac{1}{2} \sum_{i=L+1}^\infty \gamma^i$, the approximation error is

$$0 \le |x - \tilde{x}| \le \frac{1}{2} \sum_{i=L+1}^{\infty} \gamma^i = \frac{(\beta - 1)^{-1} \gamma^L}{2}$$

This concludes the proof.

Dust improves the precision of decoding

The division process

Main result 2: Characteristic equation for β reconstruction

We estimate β using the sequences b_i for $x \in (0,1)$ and c_i for $y = 1 - x \in (0,1)$, $i = 1, 2, \dots, L$, where

$$\tilde{x} = \sum_{j=1}^{i} b_j \gamma^j + \frac{\gamma^{i+1}}{2(1-\gamma)}, \quad \tilde{y} = \sum_{j=1}^{i} c_j \gamma^j + \frac{\gamma^{i+1}}{2(1-\gamma)},$$

Dust term

Daubechies' idea

Since $\tilde{x} + \tilde{y} = 1$, the estimated value of γ is a root of $P(\gamma)$, referred to as charasteristic equation of γ , defined by

$$P(\gamma) = 1 - \sum_{i=1}^{L} (b_i + c_i)\gamma^i - \frac{\gamma^{L+1}}{1 - \gamma} = 0.$$

cf.) $P_{Dau}(\gamma) = 1 - \sum_{i=1}^{N} (b_i + c_i)\gamma^i = 0.$

The precision of beta estimation

For N = 32 and $\beta = 1.77777$, the worst precision of the estimation for β when varing x and ν .

Markov chain of binary sequences generated by β -encoder

PCM generates i.i.d. binary sequences, but β -encoders does binary sequences with Markovity.

• For the invariant subinterval of β -encoder, $I = (\beta(\nu - 1), \beta\nu)$, it is very difficult to define Markov partitions of I.

We regard b_i as output of Markov chain and analyze eigenvalues of its Markov transition matrix.

If $\frac{\beta}{\beta^2-1} \leq \nu < \frac{\beta^2}{\beta^2-1}$, the approximated transition matrix is

$$\begin{pmatrix} 1 - \frac{S}{\beta T} & \frac{S}{\beta T} \\ \frac{T}{\beta S} & 1 - \frac{T}{\beta S} \end{pmatrix} \cdot \qquad S := \beta \nu - \nu > 0, \\ T := \nu - \beta(\nu - 1) > 0.$$

Second eigenvalue:

$$\lambda = 1 - \frac{1}{\beta} \left(\frac{S}{T} + \frac{T}{S}\right) \le 1 - \frac{2}{\beta} < 0.$$

Stationary distribution:

$$(\frac{T^2\beta^2}{S^2+T^2\beta^2}, \frac{S^2}{S^2+T^2\beta^2})$$

The invariant subinterval

The two-state Markov process

The distribution of eigenvalues of approximated Markov transition matrix

The estimation of eigenvalue

Observing b_i for $i = 1, 2, \dots, N$, we estimate the Markov transition matrix of beta-encoder. Let $n_{00}, n_{01}, n_{10}, n_{11}$ be defined by,

$$n_{00} := \sum_{i=1}^{N-1} (1-b_i)(1-b_{i+1}), \quad n_{01} := \sum_{i=1}^{N-1} (1-b_i)b_{i+1},$$
$$n_{10} := \sum_{i=1}^{N-1} b_i(1-b_{i+1}), \quad n_{11} := \sum_{i=1}^{N-1} b_ib_{i+1}.$$

The estimated Markov transition matrix is represented by

$$\left(\begin{array}{c} \frac{n_{00}}{n_{00}+n_{01}} & \frac{n_{01}}{n_{00}+n_{01}} \\ \frac{n_{10}}{n_{10}+n_{11}} & \frac{n_{11}}{n_{10}+n_{11}} \end{array}\right)$$

For N = 32 and $x = \pi/10$, the distribution of estimated second eigenvalues when varing β and ν .

Conclusion

Dust term
$$\frac{\gamma^{L+1}}{2(1-\gamma)}$$
 gives

- improved the precision of β -encoder up to 3dB when $\beta > 3/2$.
- derived the characteristic equation for β reconstruction.
- recommended the setting value of ν is the midpoint $\frac{(\beta-1)^{-1}+1}{2}$, neither greedy value $\nu = 1$ nor lazy value $\nu = (\beta-1)^{-1}$.